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Koopmans-like Approximation in the Kohn—Sham Method and the Impact of the Frozen
Core Approximation on the Computation of the Reactivity Parameters of the Density
Functional Theory
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A Koopmans-like approximation is introduced in the spin-polarized version of the K8Bham (KS) density
functional theory to obtain a relation between KS orbital energies and vertical ionization potential and electron
affinity. Expressions for reactivity indexes (like electronegativity, hardness, electrophilicity, and excitation
energies) include KS frontier orbital energies and additional contributions associated with the self-interaction
correction. Those reactivity parameters were computed with different exchange-correlation functionals to
test the approach for a set of small molecules. The results show that the present approximation provides a
better way to estimate hardness, electronegativity, and electrophilicity than just the use of frontier orbital
energy values. However KS HOMO and LUMO energy gap gives a better agreement with excitation energies.

I. Introduction the KS orbitals have the same physical meaning that the

o . . chemists look for? Could we relate the orbital energies emerged
Atthis time there are two well-established theories to aboard from g KS calculation with the ionization potential, the electron

the study of the electronic structure of a chemical system. The affinity, or other properties?
traditional quantum chemistry based on the Sdimger equation Some authors opened this discussion in the literdttitehas
solution and the density functional theory (DFT) where the peen proved that the KS orbitals must be carefully used when
electron density is the main variaBl®FT has been successfully ;e \want to rationalize chemical phenomena with them: sym-
applied to predict many properties of ground state with high meiry ordering, and shape of orbitals must be cheékatiere
accuracy and with less computational effort than some of the 5re two important results related with the exchange-correlation
traditional ab initio methods. This important feature has made potentials that contain the correct asymptotic behavior: (1) A
DFT a more frequently used methodology in many different ro|ationship between the HOMO KS eigenvalue and the
problems in a successfully way, mainly in large systéms. jonization potential has been establishdAlthough this
Besides, this theory has given a framework to rationalize some g|ationship has been criticizédthere is strong evidence that
empirical concepts such as electronegativityardness,and it js valid when an exchange-correlation potential with the
softnes® and has provided some new ones such as spin appropriate asymptotic behavior is uséd819(2) It has been
potential® electrophilicity? and Fukui function$.The study of found a good agreement between the KS HOMMMO
th.ese reactivity parameters in DFT is an gctive field, which is difference and the lowest excitation enef§ylhis agreement
widely used to get a better understanding of the chemical jg gxplained by the similarity of the equations from many-body
reactivity of atoms, molecules, clusters, and solids. quasiparticle and KS theori@sHowever, these two important
DFT was born in 1964 when Hohenberg and Kohn established results are not satisfied by many of the exchange-correlation
their two theorem8.But in 1965, Kohn and Sham (K®)  functionals commonly used, mainly because these functionals
provided the most powerful approach to use this theory in a do not cancel properly the self-interaction energy; consequently,
practical way. The main contribution of their proposal was the the corresponding exchange-correlation potentials show an
introduction of orbitals to compute exactly one part of the kinetic incorrect asymptotic behaviét.
energy. A detailed explanation of the KS approach can be found |t is well-known that many of the frequently used exchange-
in the literature} however, we want to emphasize that the correlation functionals do not correctly cancel the Coulomb
introduction of the KS orbitals was really relevant in the contribution of each electron with the corresponding exchange
development of DFT. These KS orbitals were originally part, this spurious remainder is known as the self-interaction
introduced only as a practical tool, and no physical meaning energy23If this self-interaction contribution is not appropriately
was initially attributed to them. Despite this, many authors have canceled, some chemical events cannot be adequately described.
extended the meaning of the Hartreféock (HF) orbital energies  |n this paper we show that the self-interaction plays an important
to the KS case, and one can found that in many cases thergle on the computation of electronic properties such as
Koopmans' theoreft s used in the same way in both theoriés.  jonization potential, electronegativity, hardness, electrophilicity,
For example, to evaluate the hardness of a chemical systemand singlet-triplet excitation energy. To estimate these quanti-
the difference between the HOMO and LUMO energies has beenties we approximate the vertical energy differences within the
indistinctly used with both KS and HF orbital3!3But, does  frozen core approximation using the spin-polarized version of
the KS DFT. The resulting expressions for removal or addition
* Corresponding author e-mail: ruvf@xanum.uam.mx. of one electron to an electronic system can be evaluated after
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the self-consistent process. The frozen core approximation
means that the relaxation in the geometry and in the orbitals is
not considered when the number of electrons is changed in a

particular process. Although this approximation suggests a name EQ _E

as frozen orbitals instead of frozen core approximation, we will
use the last one since it has been frequently used in the DFT
communitysP

In section 1, a Koopmans-like approximation is introduced
in the KS formalism. Processes where the number of electrons
changes are treated in section Ill, and those where the multiplic-
ity is changing are discussed in section IV. Computational details
are in section V. Results and discussion related with ionization
potential, electron affinity, electronegativity, hardness, electro-
philicity, and singlet-triplet excitation energy are presented in
section VI. Concluding remarks are given in section VII.

II. Koopmans-like Approximation in the KS Method

The spin-polarized KS energy for a system whitelectrons
and in the absence of a magnetic field is written as

vl

p( )o(r )

KS(N) KS(NOU Nﬁ) Zu’al
5[, -3 D+1ffd e

Exclow o5 + f drp(r)v(r) @)

Nq andNg represent the number of electrons with spirand
B, respectively, such thadl = Ny + Ng. Exclpa, pg] is the
exchange-correlation energy, an() is the external potential,
which in free molecules is only due to the nuclei.

The components of the total density are built from the KS
spin—orbitals, vy, as
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wherep,; is a spin-orbital density ang, is the electron density
associated with spin.

The KS spin-orbitals are those that minimize the total energy;
therefore, they satisfy the integro-differential KS equations:
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andvxc o(r) = 0Exc/op,(r) is the exchange-correlation potential
for spino, which corresponds to a first functional derivative of
the exchange-correlation energy functional. From eq 3, the KS
orbital energy takes the following form:
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In the frozen core approximation the electronic stBtés

€5 = @,y O @)o,i
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stateQ, using Koopmans' ideas. For the reference s@tthe
KS energy is given by eq 1:

ExslIDRsT = Exsllff 05 - ¢

@fmﬁmwﬁ—
PN ()
E
¢n )+ [ drp®n)o(r) + e +
Exc[PSv P/?]
(6)

KS =

_%@‘

N N) = 1

Exc[PSv P/?]

= Tdo?, 5, -

=TS+ [ drp%r)u(r) + 1 + Ex

where the KS spinorbitals were renumbered for a short
notation, |DgJis the KS determinant for this statéls
represents the noninteracting kinetic energy functiohaior-
responds to the classical Coulombic repulsion energy, and the
electron density for this state comes from eq 2, namely

No

p(r) = p3(r) + pj(r) = ) |$2(r) 2 ()

Since the KS orbitals for the stat@ satisfy eq 5, then the
corresponding energy can be written in the form

No
ERs = ZGQ —P+EL - z f drpS(r)vSC’(,(r) (8)
= o= p
and
O0E,c
USC,a(r) = Uyc,o(N)I PRPR = W PRCFRS )

The properties of the stafe must be obtained from the KS
determinant associated to this stg@}s[] In the frozen core
approximation, the properties of the st®®ecome from a KS
determinant constructed with the reference state orbitals,

IDRQ[ that is,

IDRSCE= |9 d5 ++* el ~ IDRPO= [F T £5 -+ FRal (10)

where the orbitals{fip} correspond to a subset of the KS
orbitals from stateQ
)

Note that the stat® can have a different number of electrons

or just a change in its multiplicity. In the former case,
unoccupied KS orbitals must be added when the number of
electrons increases, or some of them must be removed if the
number of electrons decreases. For the latter case, unoccupied
orbitals must be added to one spin set, while the same number

N
}

fP_

=12,
i _(bgl (

ai G{l, 2’.. (11)

approximately described by the orbitals of a related reference of occupied orbitals must be removed from the other spin
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branch. Thus, the KS energy of the stBtean be approximated  functional around the reference system; therefore, this expansion

by leads to
Exs = Exs(NG, N)) B — Eds= 263 - ZEiQ i
1= 1=
~ B = ExelIDRYT = EgglIf 115 -+ £, ] 50+ Ey
Ne ; S drdr'Ap,(nNAp(r)y———
= 2le7 D* [ drp"Qr)u(r) + 37 + o PO et (19)

P(Q) P(Q)
Exclpa ™ P ] where the first-order terms vanish. Additional approximations

arise if a finite number of terms are kept from the Taylor
— TPQ PQ PQ P(Q) . . -
=T~ + f drp™ (o (r) + 37 + Ex (12) expansion. It is worth to note that the Coulomb part contributes
just to the second order since derivatives of superior order
where vanish.
In addition, from the variational theorer, o > Ek, then
PQ _ 17 PQ7 =PQ _ P(Q) the frozen core vertical energy change always overestimates the
JH=J, Bee” = EXC[p“ Pp (13) true vertical value:
pP@ s the frozen core density of the st&econstructed with AE, = Eps — Eg < B — B (20)
orbitals coming from the reference stage
[ll. Changes in the Number of Electrons

Ne In this section we will discuss quantities that involve changes

FO=YIf]1P= Z|¢2lz (14) in the number of electrons such as the ionization potential (IP)
1= 1= and the electron affinity (EA). Within this paper we will work
with the frozen core approximation, which means that we will
and a similar expression for the spin components of the density. describe all the chemical processes just with information of one

Since the orbitals{ff’} also satisfy eq 5, then state, the reference statg. So we will suppose that the
relaxation of the geometry and spiorbitals are negligible, and
Ne in this sense we are preserving the Koopmans’ idea.
Q= TPQ & [ droPr)o(r) + lonization Potential. In this process we only remove one
Zfai S f p(ro(r) electron, and it can be taken from either theor g set. If o’

stands for the spin type of the removed electron, théy =

P(Q)( r) Q ; i i
p(r ) b 8y aNdApy = —0y

o 7 7 Q/ry,,Q o0 aNdAp, 000 pot, Wherepg is the orbital density of
f f dr dr 2 f dro; " (1)vic,o(r) (15) the HOMO in theo spin set andy; is the Kronecker's delta

—r b symbol. In this cas® andP(Q) are states witiN — 1 electrons,
while Q containsN electronsNote that we are subtracting one
and electron from the HOMOH]) in order to keep the validity of
KS theory and to avoid holes in the electronic configuration.
P(Q)(r)pQ(r ) For an open-shell system the removed electron comes from
ERQ = Z — [ [drdr————+ the a. component because in such a cagg > €3, and for a
= Ir—r'| closed-shell system there is no difference in the component
PQ(1)oPQr) where the electron is removed sinegy = €, then in both
_f f dror—— — ° cases the orbitapqy is involved. Therefore, eq 17 for the IP
Ir—r’'| takes the form
dr " Qr)v. (r) + EXQ (16
U=za/3 f P ) weal!) (4o IP= EEsl - EES ~ - GS,H + ol + fpava(N(%,a dr +
. . . AByc (21)
Finally, the estimated vertical energy change takes the form
with
ES — Es= Z Z &+ JAp] + EEQ — EQ. — AEye = Exclpl” = par 51 — Exclpls 05’1 (22)
&

Q Equation 21 shows that the estimation of IP is different than
2 f dr Apy(r)vxco(r) (17) the Koopmans theorem, because in HF method IP is directly

o=ap identified with the negative of the HOMO ener$fyIn KS
method there are three additional terms to the HOMO energy.
whereAp = pP@Q — pR andAp, = p7@ — p2 Note that The contribution from these terms must be small if the exact

exchange-correlation potential is used. The main characteristics
of the exact exchange-correlation potential are that it must be
self-interaction free and it must exhibit the correct asymptotic

behavior. Most of the usual exchange-correlation potentials do
and a Taylor expansion can be used on the exchange-correlatiomot satisfy such requirements. We can interpret the additional

EXS = Exclpa . 5?1 = Excleg + Apg o7 + Apgl (18)
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terms in eq 21 as a correction to the HOMO energy, coming at the same external potential. Since the external potential is
from the exchange-correlation potentials that do not ap- due to the nuclei, the restriction of a fixed external potential
propriately cancel the self-interaction contribution, to get a better means that the geometry in a molecule must be frozen in the
approximation to the IP. process of removing or adding electrons. Using the finite
The strategy is clear, first we have to obtain properties of differences approximation, it is obtained that= (1/2)(IP +

the reference syste@. Later, we evaluate the terms involved EA) andn = (IP — EA). Since the external potential is fixed

in eq 21, in this way the IP can be estimated just with the in the derivatives of eqs 26 and 27, the corresponding IP and
information of the reference state. Another procedure to evaluateEA are related with the corresponding vertical values. In this
IP comes from the truncated Taylor expansion given by eq 19. way both quantities can be approximated in our approach by
In this particular case it must be evaluated wkp = —pgn: using eqgs 21 and 24. For a closed-shell system the electro-

negativity is given by
0*(J + Exo)

IP=—e, +%f f dr dr’(—)paH(r)paH(r’)

0pa(r)0py(r") 23) b %(%,H + e T (12)Apgr] — Ipa] +

N) P Ap=EA
In the exchange-only approach, Gopinaffagot a similar f(paH F Pu)Vxcq O + ABxc = ABxc) (28)

equation for thex, method. However, this author did not take
into account the second-order term in the series expansion of2nd the hardness takes the form

the exchange energy; therefore the second derivati&®fn

eq 23 did not appear in his formulation. Thus, there are two 7~ (€ar — €an) T Jpgul + Ipal +

ways to approximate the IP. In one case we must evaluate the _ (N) P EA
difference AEL. and, in the other, this difference is ap- J(ban = PV O + ABic + A (29)
proximated with a series expansion up to second order. In this

work we only use the former one for all the cases, since
=]

From here, the electrophilicity can be computed as

additional approximations taEy.. are avoided and its com- 2 2
putational implementation is easier. o=8%t =X (30)
Electron Affinity. In this case an electron is added to the 2n 2

system in they' spin set, thelANy = 6, andApy = d5.¢Pot, o
where p,. is the orbital density of the LUMO in the spin ~ The average between the HOMO and LUMO energies is
branch. The reference stafecontainsN electronsP andP(Q) involved in the evaluation of the electronegativity, and the
are states with one additional electron. For a closed-shell systenflifference between them is required to evaluate the hardness
the LUMO is equal for bottw or 3 orbitals, but for an open- according to egs 28 and 29. These combinations of the orbital
shell system the electron must be added according to the Hund's€nergies are commonly used to estimate electronegativity and
high multiplicity rule. Here we restrict our attention to the hardness, in the context of the KS method; however, there are

(EA), given by eq 17, yields explore the contribution of these additional terms and their role
in the description of the electronegativity, hardness, and
_ =N N+1 N N electrophilicity.
EA=Eys — Exs™ ~ — €4 — Jpal fPaLU§<c),a dr — P Y
AE% (24) IV. Excitation Energies
In section IIl, we discussed processes where the total number
where of electrons is changing. However, in processes such as
EA N N N ) electronic excitation, the number of electrons is constant. In
AExc = Exclpy ' Pp ] = Exclpa” + Pous Pp 1 (25) this section we analyze processes involving changes in the

o . multiplicity; consequently, the spin numbe¥s = Ny, — Ng,

Although egs 21 and 24 are similar, the sign for the coulomb giso varies. For example, consider a process where an electron
integral and the difference between the exchange-correlationis transferred from thg set to thex one. Note that this process
energy are different. So it is expected a different behavior represents an electronic excitation. In this approach we preserve
between the IP and the EA. the geometry, so vertical excitation energies or vertical splitting

Electronegativity and Hardness.Frequently, the electro-  energies are described.
negativity and hardness are computed by using the HOMO and  Toward a Higher Multiplicity. In this process the number
LUMO energies. It is well-known that these reactivity indexes of electrons from the componeatincreases, while the number
are related with derivatives of the total energy; the electro- of glectrons from the spif§ decreases in the same amount to
negativity,y, with the chemical potential;, which is the first keepN constant. In terms ofl, andN;, we have
derivative?
- AN,=1 AN;=-1 (31)

) (26)

v

X="H= —(—
oN This case presents a difference with respect to the processes
and the hardness, with the second derivative: treated in section lll, whereas in those procesSgsor Ng
changes, here botk, andNg are changing. Since one electron
9E from HOMO g is transferred to the LUM@, the changes in
n=- W ) (27) the spin-densities are

It is important to note that both derivatives must be evaluated Apy = P AP/; = " Ppn (32)
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To estimate the energy change involved in this process (HM),
we must evaluate eq 17, witkp, andApg from eq 32, to obtain

HM = EQe N1 — Efe™) ~ (€ — €pp) T P —

o + (o800 — p o 019) + AEY (33)

XC,5 0
Note that, although in eqs 29 and 33 the difference between
the frontier orbital energies appears, these equations are drasti
cally different. First, in eq 33 there is a cross term in the
Coulombic contribution that is not present in eq 29. Second, in

eq 29, two differences between the exchange-correlation ener-

gies are involved, while in eq 33 just one appedsEy. =
Exclpa + pats pp — pprl — Exclpa, pgl. Consequently egs 29
and 33 have different values, and they represent two different
quantities, the hardness and an excitation energy, respectively

Vargas et al.

the NWChem V4.5 cod® Integrals are evaluated at the end
of the self-consistent cycle, and results are obtained in a single
program execution. The exchange-correlation functionals used
are Dirac (Slatefp and SVWN?31 for LDA, Becke®? and
BLYP3233for GGA, and B3LYP for the hybrid methot.The
results obtained with these exchange-correlation functionals are
compared with the orbitals energies obtained with exchange
potentials that exhibit correct asymptotic behavior such as HF
and the exact local multiplicative exchange potentig).
Details about ther**® can be found in ref 15. The most
important characteristic of this potential is that it gives KS
orbitals that reproduce HF densities. Additionally, the vertical
energy differences AEy) of each process were evaluated
according to theASCF method, where on the neutral system
geometry the energy is computed when the number of electrons

Expansion of eq 33 up to second order leads to an expressioryy spin is changed. Thus results from egs 21, 24, and 33 will

similar to eq 19:
Ap(r')Ap(r)
+

1
HM ~ (e,, —€,y) +— dr dr’
( oL ,B,H) sz Ir — r,|

1 éZExc
- dr dr'
20,12&,/3 f f rr

0p,(r)opy,(r')

with Ap = Apa + Apg = pan — ppL. Equation 34 constitutes

an important result because it relates our approach with the time-
dependent DFT approaéhjf the density current dependence
is ignored. To estimate the energy changes when the multiplicity
increases, we can use eq 33 or eq 34. We use eq 33 in order t
avoid a truncation error from the series expansion. Furthermore
note that the difference between the spin frontier orbital

Apy (1) Ap,(r) (34)

eigenvalues in eqgs 33 and 34 represents twice the spin potentia{

(us).826 This reactivity parameter has been defined in the spin-
polarized DFT, and it has been used previously with a different
approach to estimate vertical singtetiplet energy gaps in
halocarbene¥ transition metal iong® free radical generatofs,
and other compounds. Additionally, previous works have
directly related the HOMGLUMO eigenvalue gap with the
excitation energy when the exact exchange-correlation potential
is usedt®29We have found that the excitation energy estimate
has additional terms to the HOM@.UMO difference. Since
the exchange-correlation functionals currently used do not have
the correct asymptotic behavior and are not self-interaction free,
all terms in eq 33 must be kept.

Toward a Lower Multiplicity. The energy change for the
decrement in the multiplicity is straightforward using the

(]

be compared with vertical energy changes.

The systems used to test the reliability of this approach are
LiH, FH, H,O, NHz, and CH, and experimental geometries
for these systems were used. Since the virtual orbital energies
are involved in our approach, we used the aug-cc-p¥Tidth
an additional diffuse function as a basis set. We used this basis
set because the diffuse functions have a big impact in the
description of DFT and HF virtual orbitals and in the aniéft&%d
As it was mentioned in section Il, the most important feature
of the approach presented in this work is that we are just using
information from the ground state. The additional effort after
the self-consistent process corresponds to the evaluation of the
integrals JAp. + Apgl, Excloe + Apw pp + Apgl,

J drApa(r)vxco(r), and s dr Apg(r)vxcg(r). It means that after

he self-consistent processand Exc must be evaluated with

he differenceAp, and Apg, such differences depend on the
process to be considered and they are frontier orbital densities.
Additionally, the exchange-correlation potential for each spin-
component is integrated with its respective density difference.

VI. Results and Discussion

lonization Potential. Three approximations for the ionization
potential reported in Table 1 are (1) the negative of the HOMO
eigenvalue obtained with the exchange-correlation functionals
considered in this work, (2) the frozen core approximation given
by eq 21 and, (3) the direct computation of the vertical energy
difference AEy), the cation minus the neutral system. The
behavior of these quantities is depicted in Figure 1. All of these

the following changes:
AN, =—1,AN; =1 (35)
and
Apy = ~Pans Aos = ppL (36)

where we assumed that one electron is transferred from HOMO
o to LUMO f. For this case the energy change (LM) is

LM = E&’\,‘éflv”/fﬂ) _ E%"Nﬁ) & (eﬁ,L —€qn) T
Ny—N Ng—N LM
‘J[pﬁL = Pl T f(pava(C,a ) — pﬁng(C,ﬁ ﬂ)) dr + AExc
(37)
V. Computational Details

To test our approach to approximate IP, EA, and HM, eqs
21, 24, and 33 were programmed in a development version of

1 with the experimental informatiéfh and with the HOMO
energy obtained with exchange potentials that exhibit good
asymptotic behavior, such as the HF potential and the local
multiplicative exchange potentiaf; "

From Table 1 and Figure 1, it is evident the well-known fact
that the HOMO energy obtained from the usual DFT exchange-
correlation potentials underestimates the ionization potential.
This observation led to assume that the HOMO from KS theory
was not directly related with the ionization potential since LDA,
GGA and hybrid methods are not satisfying the relatior=lP
—enomo. Contrary to this behavior, exchange potentials with
the correct asymptotic behavior give HOMO energies close to
the experimental ionization potential, although they slightly
overestimate this quantity.

According to eq 21, the additional terms of the HOMO energy
are related to the contribution of the non-canceled self-
interaction by the usual exchange-correlation functionals. Note
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TABLE 1: Estimations for the lonization Potential in TABLE 2: Error between the IP Estimated by Equation 21
Hartrees and the Vertical Energy Difference
system system
method LiH FH HO NH;3 CH4 method LiH FH HO NH; CH,

—enomo  0.1284  0.3109 0.2254 0.1880 0.3018 Slater 0.0455 0.1247 0.1042 0.0822 0.0403

Slater eq2l 0.2898 0.6808 0.5319 0.4426 0.5093 Becke 0.0468 0.1267 0.1066 0.0840 0.0391
AEy 0.2443 0.5561 0.4277 0.3604 0.4690 SVWN 0.0406 0.1230 0.1029 0.0811 0.0387

BLYP 0.0430 0.1250 0.1050 0.0824 0.0497

“erowo 01389 03213  0.2346 0.1977 03165 = g3 yp 00421 0.238 01045 0.0818  0.0383
Becke eq2l  0.3099 06841 05361 04486 05212 ueraqe 00436 01246 01046 00823  0.0412

AEy 0.2631 0.5574 0.4295 0.3646 0.4821

—enomo  0.1613  0.361  0.2719 0.2322 0.3482  of the orbitals in DFT for the vertical IP is not very sensitive to
SVWN eq21 0.3422 0.7392 0.5872 0.4965 0.5619 the type of the exchange-correlation functional used, even if a
ARy 0.3016 0.6162 0.4843 0.4154 05232  (grrelation functional is not considered. The average of the
—eiomo  0.1588 0.3543 0.265 0.226  0.3449 overestimation in the IP obtained with eq 21 for each molecule
BLYP eq21 0.3433 0.7243 0.5742 0.4857 0.5663 also is reported in Table 2. The largest overestimation corre-
ABy 0.3003 0.5993 0.4692 0.4033 0.5166  gponds to the molecule FH with an average of 0.1246 hartrees.
—enomo  0.1953  0.4245 0.3246 0.2774 0.396 Although we are obtaining an overestimation of the IP using
B3LYP eq21 0.3465 0.7237 0.575 0.4878 0.5629 eq 21, this prediction is much better than that coming from the
AEy 0.3044 0.5999 0.4705 0.4060 0.5246 HOMO energy obtained with the same exchange-correlation
HF —ehomo  0.3015  0.6503 0.5103 0.4316 0.5455 functionals, as it can be seen from Table 1.
exact Using the BLYP method as reference for the vertical IP, we
Vx —enowo  0.3031  0.6421  0.5054  0.4308 0.5349 5, compare these values with the HOMO energies obtained
exp IP 028 05% 046 038 048 with HF andvZ*®*! We use the BLYP functional as reference
a b since it presents a good performance in the prediction of
Ref 362" Ref 36D adiabatic IP and EA’ In Figure 2, the verticahE obtained
that the values from Table 1 show that the hybrid B3LYP with the BLYP functional is compared with the negative of the
functional presents the smallest spurious contribution on eachHOMO energy obtained with HF and witlj***. From Table 1
molecule. and Figure 2 we see that these HOMO energies are closer to
Comparing the vertical energy difference for all functionals the vertical IP than to the adiabatic experimental counterpart.
with the experimental ionization potential, we see that the Recently some results showed that the HOMO energies can be
inclusion of a correlation functional, such as VWN or LYP, is improved with the design of exchange-correlation potentials with
important in order to obtain better approximations to the the correct asymptotic behavié?38 or using a scaling ap-
experimental data. One can observe that vertical energiesproach®®
overestimate the IP. The reason of this behavior comes from Electron Affinity. The prediction of electron affinities is a
the lack of the relaxation in the geometry. Remember that in challenge for any quantum chemistry method because the EA
this work we have used experimental geometries to test ouris a small quantity compared with the ionization potential.
approach. Let us work with one molecule with one of the largest Recently it was shown that DFT gives a good prediction of the
differences with respect to the experiment; Niith 0.023 and adiabatic electron affinity in well-characterized systeéfistom
0.026 hartrees for BLYP and B3LYP, respectively. If we eq 24 we see that the LUMO energy is related with the electron
optimize the neutral system with the BLYP method and the IP affinity, in fact within HF theory, in the Koopmans’ context,
is estimated with thASCF method, it is found an IP of 0.4006 the negative of this orbital energy is directly related with the
hartrees. If the geometry of the cation is optimized, the predicted electron affinity. Like in the ionization process, the additional
adiabatic IP is 0.3734 hartrees, which give a better comparisonterms in eq 24 are related with the self-interaction energy.
with respect to the experimental information. That means that In Table 3, the vertical electron affinitiesAEy) for the
for the NH; molecule the geometry relaxation contribute in molecules considered in this work are presented. These vertical
0.0272 hartrees. It is important to point out that we picked the electron affinities are compared with the negative of the LUMO
BLYP and B3LYP functionals to make this comparison since energy obtained with all exchange-correlation functionals tested.
they give a good prediction of the IP when the adiabatic process From this table AEy shows that only the LiH molecule has an
is considered. anion that is more stable than the corresponding neutral
As we mentioned before, our frozen core approach is basedmolecule. This means that the EA estimated\#y, is negative
in the absence of relaxation in the geometry and the orbitals. in all the other studied molecules. Contrary to this behavior,
For this reason the results obtained from eq 21 must be with all the exchange-correlation potentials tested here, the
compared with the vertical energy differences, and the difference estimation to the electron affinity given by the LUMO energy
obtained between both cases must be attributed to the lack ofis always positive. The sign of this orbital energy, shown in
relaxation of the orbitals. In Table 2, the absolute error between Table 3, is different to that obtained witkEy. The main point
eq 21 and the vertical ionization potential is reported. From here is that the LUMO energies obtained with any of the used
this table it is clear that the lack of relaxation of the orbitals in exchange-correlation functionals give a bad approximation to
eq 21 is important. For all molecules and all exchange- the EA, since all of them are negative and consequently they
correlation functionals considered in this work, eq 21 over- yield positive electron affinities. In general the LUMO energy
estimates the vertical ionization potential due to the absence ofis bound when it is obtained with the usual exchange-correlation
relaxation in the orbitals, this trend is in agreement with eq 20. potentials, although its value is small. In ref 22b the difference
It is interesting to note that the overestimation obtained for a between HF and KS potentials is addressed. The frozen core
given molecule with any exchange-correlation functional is estimation given by eq 24 is also presented in Table 3, and
almost constant. This fact seems to indicate that the relaxationtrends are shown in Figure 3. It can also be seen from Table 3
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Figure 1. lonization potential. The solid circles indicate the vertical ionization potential, the open circles indicate the negative of the HOMO
energies, and the triangles indicate the estimation obtained from eq 21.
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TABLE 3: Estimations for the Electron Affinity in Hartrees
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Figure 2. lonization potential. The solid circles correspond to the
experimental values, the open circles correspond to the BLYP vertical
values, the solid triangles correspond to the negative of the HF HOMO,

the open triangles correspond to the negative of the HOMO obtained BLYP

with thev2*“'potential, and the solid squares correspond to the BLYP

frozen core approximation.

that if exchange-correlation potentials with the correct asymp-
totic potential are used, LUMO energies are bound and more
negative. This behavior is not shared by the HF LUMO energy;

Table 3 shows that its value is positive, except for LiH, and vy

system
method LiH FH HO NH3 CH,
—eumo  0.0412  0.0155 0.0159 0.0110 0.0023
Slater eq24 —0.0156 —0.0393 —0.0350 —0.0295 —0.0226
AEy 0.0057 —0.0111 —0.0105 —0.0103 —0.0109
—eumo  0.0487  0.0260 0.0256 0.0199 0.0103
Becke eq24 —0.0060 —0.0365 —0.0314 —0.0271 —0.0237
AEy 0.0120 —0.0064 —0.0062 —0.0063 —0.0066
—eumo  0.0561  0.0344 0.0343 0.0268 0.0136
SVWN eq24 —0.0033 —0.0414 —0.0330 —0.0281 —0.0237
AEy 0.0163 —0.0010 —0.0007 —0.0014 —0.0032
—euvo  0.0621  0.0413 0.0396 0.0316 0.0190
eq24 —0.0081 —0.0428 —0.0345 —0.0304 —0.0277
AEy 0.0145 —0.0041 —0.0039 —0.0047 —0.0062
—eumo  0.0511 0.0267 0.0262 0.0205 0.0107
B3LYP eq24 0.0010—-0.0266 —0.0225 —0.0201 —0.0182
AEy 0.0165 —0.0016 —0.0016 —0.0023 —0.0038
—eumo  0.0078 —0.0078 —0.0083 —0.0081 —0.0086
—eumo  0.1619  0.2212 0.1976 0.1706 0.1515

very close to zero. In Figure 4, the behavior of the negative

LUMO energies obtained with HF and with the local multiplica-
is presented. Both energies are compared obtained with thev
with the vertical EA obtained with the BLYP functional. From

exact

tive potentialv,

X

this figure it is clear that the trend exhibited by the LUMO

exact

potential is very different to that

obtained with HF, which is a different behavior with respect to
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Figure 3. Electron affinity. The solid circles indicate the vertical electron affinity, the open circles indicate the negative of the LUMO energies,
and the triangles indicate the estimation obtained from eq 24.

0.25 The frozen core approximation gives a better estimation of
p EA, however the corresponding values underestimate this energy

0.20 - J/ AN difference (eq 20) and EA values obtained from eq 24 are

- / g negative in all cases, except for the B3LYP functional where
S 0157 v the sign is correctly predicted. Since the present approach

< T T approximates the energy of the anion with the orbitals from
M 0.00 1 - the neutral species, it is assumed that the new orbital remains
unchanged. The results show that this assumption does not hold.

"v__/v-‘/v"‘v In the process of adding one electron to a molecule, the KS

-0.05 . i . . . orbital relaxation plays a very important role, which may lead

LiH FH H20 NH3 CH4 to important errors.
Figure 4. Electron affinity. The solid circles indicate the BLYP vertical In summary, the ionization potential can be reasonably

values, the open circles indicate the negative of the HF LUMO energies, approximated from eq 21 or directly using the HOMO energy
the solid triangles indicate the negative of the LUMO obtained with obtained from »&act potential. The trend exhibited by the

the v2*** potential, and the blank triangles indicate the BLYP f X . ) .
Coigxapp?gxﬁﬂézor? nd the blank friangies Indicate e 928N Liomo energy obtained with the exchange-correlation potentials

considered in this work is similar to those obtained with the

the ionization potential where both methods give essentially the vertical ionization potentials. Contrary to this behavior the sign
same trend. The main reason of such a difference stems in thaff the vertical electron affinity cannot be reproduced by the
HF and local-multiplicative potentials exhibit a different LUMO energy obtained with any exchange-correlation potential,
behavior for the virtual orbitals, as it has been discussed in neither with the local multiplicative potentialy®* Thus, the
previous work??® Note that the use of additional diffuse negative of the LUMO energy obtained from an exchange-
functions, for example in the aug-cc-pVTZ basis set, generatescorrelation potential with the correct asymptotic behavior must
an improvement to the HF LUMO energies and the trend not be used as an approximation to the EA. Consequently the
exhibited by these energies is similar to that obtained with the anomalies presented by the LUMO energies will affect the
vertical EA. description of they, n, andw obtained from these quantities.
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TABLE 4: Electronegativity Obtained with the HOMO and 0.45
LUMO Energies, the Frozen Core Approximation, and the ~ 040 1
Vertical Energy Differencest s 0.40
S 035
system =
method LH FH HO NHy CH, Z 030
<
orbital energies 0.0848 0.1632 0.1207 0.0995 0.1521 & 025 A
Slater  frozen core 0.1371 0.3208 0.2485 0.2066 0.2434 § 020 4
vert. difference  0.1250 0.2725 0.2086 0.1751 0.2291 g ’
orbital energies 0.0938 0.1737 0.1301 0.1088 0.1634 B 0159
Becke frozen core 0.1520 0.3238 0.2524 0.2108 0.2488 0.10 T T T T T
vert. difference 0.1375 0.2755 0.2116 0.1791 0.2377 LiIH FH H20 NH3 CH4
orbital energies 0.1087 0.1977 0.1531 0.1295 0.1809 Figure 5. Electronegativity estimated with the BLYP vertical energy
SVWN frozen core 0.1695 0.3489 0.2771 0.2342 0.2691 differences (solid circles), HF orbital energies (open circle§f™
vert. difference 0.1589 0.3076 0.2418 0.2070 0.2600 orbital energies (solid triangles), and BLYP frozen core approximation
. . (open triangles).
orbital energies 0.1105 0.1978 0.1523 0.1288 0.1820
BLYP  frozen core 0.1676 0.3408 0.2699 0.2277 0.2693 TABLE 5: Hardness Obtained with the HOMO and LUMO
vert. difference  0.1574 0.2976 0.2326 0.1993 0.2552 Energies, the Frozen Core Approximation, and the Vertical
orbital energies 0.1232 0.2256 0.1754 0.1490 0.2034 Energy Differences
B3LYP frozen core 0.1738 0.3486 0.2763 0.2339 0.2724 system
vert. difference  0.1604 0.2992 0.2344 0.2018 0.2604 method Y FH HO NH, Ch.
HF orbital energies 0.1547 0.3213 0.2510 0.2118 0.2685 orbital energies 0.0872 0.2954 0.2095 0.1770 0.2995
pexact orbital energies 0.2325 0.4317 0.3515 0.3007 0.3432 Slater frozer_1 core 0.3054 0.7201 0.5669 0.4721 0.5319
X vert. difference 0.2386 0.5673 0.4382 0.3707 0.4799
aValues reported in hartrees. ) .
orbital energies 0.0902 0.2953 0.2090 0.1778 0.3062
Becke frozen core 0.3159 0.7206 0.5675 0.4757 0.5449
. . . . vert. difference 0.2512 0.5638 0.4357 0.3709 0.4887
This problem does not apply to the HF orbital energies since _ _
these energies give reasonable approximations to IP and EA'SVWN ‘f)fb'tal energies 8-;25552 8-%32 g-gggg 8-52322 8-533542
- . . . . rozen core . . . . .
Electronegativity. This quantity was obtained by using the vert. difference 0.2853 0.6172 0.4849 0.4167 0.5264
vertical IP and EA according to the finite difference approxima- _ _
tion y = Y,(IP + EA). Estimation of IP and EA is done with orbital energies 0.0967 0.3130 0.2254 0.1944 0.3259
the following approximations: (1) vertical energigsEy; (2) BLYP Ugrztegif?g::nce 8-32%@ 8-232:}) 8'2‘321 8'2(1)2(1) 8'23‘2“;
frozen core, eq 28; (3) HOMO and LUMO energies. These ) ' ’ ’ ’ ’
results are reported in Table 4. orbital energies 0.1442 0.3978 0.2984 0.2569 0.3853
Since the electron affinity is a small quantity, in general the B3LYP' frozencore ~0.3455 0.7503 10.2975 05079 0.5811
electronegativity behavior is commanded by the ionization vert. diterence 9. : : ) )
potential. Although the LUMO energies obtained with any of HF orbital energies 0.2937 0.6581 0.5186 0.4397 0.5541
the tested exchange-correlation functionals are negative, theyvexact orbital energies 0.1412 0.4209 0.3079 0.2602 0.3834

are close to zero. Consequently the electronegativity trend from *

HOMO and LUMO energies, obtained with these functionals,
is similar to that obtained with the HOMO energy for the
estimation of IP (see Figure 1).

It is evident that, in absolute values, the estimatiop wfith

aValues reported in hartrees.

frozen core, eq 29; (3) HOMO and LUMO energies. The results
are reported in Table 5.
The hardness obtained with the eq 29 and with the HOMO

the KS orbital energies is not good. However, the underestima- and LUMO energies show a similar trend to that obtained with
tion of x given by the orbital energies is modified in the correct the vertical energy differences. Comparing results from Table
direction by the frozen core approximation proposed in this 1 and Table 5, it is clear that the behavior exhibited by the
work; moreover, this approach presents a small overestimationhardness is similar to that of the ionization potential with any
of such quantity. Thus, the prediction made by the frozen core of the exchange-correlation potentials used in this work, since
approximation is better than that obtained by the HOMO and the LUMO energies are very small. Although the electron

LUMO energies.

In Figure 5, the electronegativity from the vertical energy
differences obtained with the BLYP functional is compared with
the y estimated with the orbital energies from HF anf®®
potentials. Without doubt the trend obtained for this quantity
with the HF orbital energies is very similar to that obtained
with the vertical BLYP energy differences; in fact the absolute

affinity is underestimated by the frozen core approach, the trend
is similar to that from the vertical energy differences. In Table

5 the hardness obtained with the three approaches to IP and
EA is reported. From this table we can see that the frozen core
approach gives a better estimation of the hardness than that
obtained just with the KS HOMO and LUMO energies.

Overestimation of the hardness by the frozen core approach

values between these two methods are in good agreement. Irshown in Table 5 is a consequence of eq 20.

opposition to the previous methods, the electronegativity

estimated with the orbital energies frori®"is greater than

In Figure 6, the hardness obtained with the BLYP vertical
energy differences and with HOMO and LUMO energies from

that obtained with the vertical energy difference, since the the HF andvS*** potentials is depicted. It is clear that the HF

exact

LUMO energy obtained fromy, ' is very deep.

Hardness. As it was mentioned above, the hardness is
estimated ag) = (IP — EA). Here we again used the same
approximations for the IP and EA: (1) vertical energies; (2)

frontier orbital energies give a reasonable estimation of hardness.
Contrary to this behavior, the hardness values calculated with
the frontier orbital energies from the local multiplicative
potential ¢5*°) underestimate the BLYP vertical energy dif-
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Figure 6. Hardness estimated with the BLYP vertical energy differ-
ences (solid circles), with HF orbital energies (open circle§f:™
orbital energies (solid triangles), and BLYP frozen core approximation
(open triangles).

TABLE 6: Electrophilicity Obtained with the HOMO and
LUMO Energies, the Frozen Core Approximation, and the
Vertical Energy Differencest

Figure 7. Electrophilicity estimated with the BLYP vertical energy
differences (solid circles), HF orbital energies (open circle§)™
orbital energies (solid triangles), BLYP frozen core approximation (open
triangles), and BLYP orbital energies (solid squares).

TABLE 7: Estimations for Vertical Excitation Energies

Singlet—Triplet 2

system
system -
- method LiH FH HO NH; CH,
method LiH FH HO NH; CH,
- - e.—enq 0.0872 0.2955 0.2095 0.1770 0.2994
orbital energies 0.0412 0.0451 0.0347 0.0280 0.0386 gjater eq 33 0.1194 0.4809 0.3460 0.2891 0.3999
Slater  frozen core 0.0308 0.0714 0.0544 0.0452 0.0557 AEy 0.0812 0.3487 0.2396 0.2017 0.3575
vert. difference  0.0327 0.0654 0.0497 0.0414 0.0547
) . €. —eq 0.0902 0.2953 0.2090 0.1778 0.3062
orbital energies 0.0488 0.0511 0.0405 0.0333 0.0436 pBecke eq 33 0.1304 0.4724 0.3426 0.2879 0.4014
Becke frozen core 0.0365 0.0727 0.0561 0.0467 0.0568 AEy 0.0893 0.3394 0.2331 0.1995 0.3630
vert. difference 0.0377 0.0673 0.0514 0.0432 0.0578
) . €. —eq 0.1053 0.3267 0.2376 0.2053 0.3346
orbital energies 0.0562 0.0598 0.0493 0.0408 0.0489 sywN eq 33 0.1548 0.4954 0.3620 0.3085 0.4175
SVWN frozen core 0.0416 0.0780 0.0619 0.0523 0.0618 AEy 0.1222 0.3839 0.2721 0.2353 0.3874
vert. difference  0.0443 0.0766 0.0603 0.0514 0.0642
) . €. —eq 0.0967 0.3130 0.2254 0.1944 0.3259
orbital energies 0.0631 0.0625 0.0515 0.0427 0.0508 pgLYPp eq 33 0.1576 0.4866 0.3571 0.3052 0.4162
BLYP frozen core 0.0400 0.0757 0.0598 0.0502 0.0610 AEy 0.1221 0.3686 0.2601 0.2271 0.3853
vert. difference 0.0433 0.0734 0.0572 0.0487 0.0623
) ) €. —en 0.1442 0.3978 0.2983 0.2569 0.3853
orbital energies 0.0526 0.0640 0.0516 0.0432 0.0537 B3LYP eq 33 0.1616 0.5021 0.3705 0.3161 0.4321
B3LYP frozen core 0.0437 0.0810 0.0639 0.0538 0.0638 AEy 0.1221 0.3663 0.2598 0.2284 0.3927
vert. difference  0.0447 0.0744 0.0582 0.0499 0.0642
) . HF €. —eq 0.2937 0.6581 0.5186 0.4397 0.5541
HF orbital energies 0.0407 0.0784 0.0607 0.0510 0.0650
) ) exact e.—eq 01412 0.4209 0.3079 0.2602 0.3834
Vixa"‘ orbital energies 0.1914 0.2213 0.2006 0.1738 0.1536 *
experiment 0.12 032 026 021 040

aValues reported in hartrees.
aValues reported in hartreesRef 36a.° Ref 41.9 Ref 36b.
ferences, roughly in one-half. Curiously, the hardness values
from the frontier orbitals of B3LYP and the local multiplicative
potential are very similar. Thus, we can conclude that the orbital
energies obtained with a local multiplicative potential such, as
LDA, GGA or v$**'must not be used to estimate the hardness
of a chemical system. This observation can be applied to any

then the frozen core approach proposed in this work must be
used in order to get a better approximation.

Excitation Energies. Up to now, quantities related with
energy differences due to changes in the number of electrons
have been discussed. Here energy differences due to multiplicity
A . changes, where the number of electrons remains fixed, are
KS local multiplicative potential. discussed. In particular, we are interested in changes where a

Electrophilicity. In Table 6 the electrophilicity computed  closed-shell system transforms into a vertical triplet state
from x andy with the three previously discussed approaches is (vertical singlet-triplet splitting), and this process corresponds
reported. From the previous analysis of the KS orbital energies tg a vertical excitation energy. In Table 7 several approximations
performance, it is clear that the use of the HOMO and LUMO to vertical excitation energies, for all exchange-correlation
KS energies is not suitable for the estimation of this property. functionals tested, are reported: (1) the vertical tripihglet

|n-faCt, if orbital energies from an eX.Change-COTrelation pOtentla' energy diﬁerence’ (2) frozen core (eq 33)’ and (3) orbital energy
with the correct asymptotic behavior are used, the estimation gifference e_ymo — €eHomo. Experimental vertical excitation

of w becomes worst, with respect to those values obtained with energies are also listéd.
vertical differences to IP and EA. Contrary to this behavior the From Table 7 we note that the vertical excitation energies
HF orbital energies give a good estimationaaflt is worth to predicted by DFT are in good agreement with the experimental
note that the frozen core approximation proposed in this work counterpart. To obtain this agreement it is important to include
gives values o close to those obtained with the vertical energy  the correlation energy contribution. Table 8 presents the relative
differences. These trends are shown in Figure 7. percent error obtained with all exchange-correlation functionals
From previous sections we can conclude that for the estima- used in this work with respect to the experimental values. From
tion of x, #, andw with orbital energies it is only recommend- this table, the underestimation of the vertical excitation energies
able to use the HF approach, but if the KS approach is used,obtained with exchange-only functionals is evident. The inclu-
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Figure 8. Vertical excitation energies. Solid circles represent vertical energy differences, open circles indicate the orbital energies, and the triangles
indicate the estimation obtained from the frozen core approximation, eq 33.

TABLE 8: Relative Percent Error between the Vertical 0.7
Excitation Energies and Experimental Data = 06 o
S 06 R
system s
: = 0.5
Exc LiH FH H20 NHs CH4 &D 0.4
Q 4
Slater —32 -8 -8 —4 -11 5
Becke —26 -11 —10 =5 -9 g 0.3 1
SVWN 2 1 5 12 3 S 024
BLYP 2 -3 0 8 -4 5
B3LYP 2 4 0 9 -2 Z 0.1
00 T T T T T

sion of a correlation functional greatly improves the prediction
of these guantltles, even with the_ locfil SVWN functional we Figure 9. Excitation energies estimated with the BLYP vertical energy
can obtain a reasonable approximation, except for the NH gitterences (solid circles), HF orbital energies (open circle§f™
where the error increases. orbital energies (solid triangles), experimental values (open triangles),
The behavior of the vertical excitation energy for each and BLYP frozen core approximation (solid squares).
exchange-correlation functional is depicted in Figure 8. Com-
paring the excitation energies with the hardness, both obtained . L
with the vertical energy differences, it is clear that they are 'It:han thgse ok(;ta]ine(élj:(ol;n the_ frlozen core appro_xmat;:on. l(;]
different. Whereas the differencgumo — enomo gives an lgure 9, trends for vertical excitation energies, HF, an
evident underestimation of the hardness, this difference is very¥x  frontier orbital energy differences are compared with
close to the vertical excitation energies for any exchange- experimental data. In opposition to the KS case, the HF orbital
correlation functional of this work242 Overestimation of the ~ €nergies are not appropriate to approximate excitation energies,
frozen core vertical excitation energies, observed in Table 7, an overestimation to this quantity is found, whugac‘values
comes from eq 20. Contrary to the results obtained in previous slightly overestimate the BLYP vertical values. It is important
sections, the values from the orbital energy difference are betterto note that HF frontier orbital energies are related to removal

LiH FH H20 NH3 CH4
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or addition of electrons by Koopmans’ theorem, but excitation

energy does not naturally appear in this model.

VII. Concluding Remarks

In this paper the frontier KS orbitals are used to estimate
properties such as electronegativity, hardness, electrophilicity,
and excitation energies in the frozen core approximation. It is
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