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A Koopmans-like approximation is introduced in the spin-polarized version of the Kohn-Sham (KS) density
functional theory to obtain a relation between KS orbital energies and vertical ionization potential and electron
affinity. Expressions for reactivity indexes (like electronegativity, hardness, electrophilicity, and excitation
energies) include KS frontier orbital energies and additional contributions associated with the self-interaction
correction. Those reactivity parameters were computed with different exchange-correlation functionals to
test the approach for a set of small molecules. The results show that the present approximation provides a
better way to estimate hardness, electronegativity, and electrophilicity than just the use of frontier orbital
energy values. However KS HOMO and LUMO energy gap gives a better agreement with excitation energies.

I. Introduction

At this time there are two well-established theories to aboard
the study of the electronic structure of a chemical system. The
traditional quantum chemistry based on the Schro¨dinger equation
solution and the density functional theory (DFT) where the
electron density is the main variable.1 DFT has been successfully
applied to predict many properties of ground state with high
accuracy and with less computational effort than some of the
traditional ab initio methods. This important feature has made
DFT a more frequently used methodology in many different
problems in a successfully way, mainly in large systems.2

Besides, this theory has given a framework to rationalize some
empirical concepts such as electronegativity,3 hardness,4 and
softness5 and has provided some new ones such as spin
potential,6 electrophilicity,7 and Fukui functions.8 The study of
these reactivity parameters in DFT is an active field, which is
widely used to get a better understanding of the chemical
reactivity of atoms, molecules, clusters, and solids.

DFT was born in 1964 when Hohenberg and Kohn established
their two theorems.9 But in 1965, Kohn and Sham (KS)10

provided the most powerful approach to use this theory in a
practical way. The main contribution of their proposal was the
introduction of orbitals to compute exactly one part of the kinetic
energy. A detailed explanation of the KS approach can be found
in the literature;1 however, we want to emphasize that the
introduction of the KS orbitals was really relevant in the
development of DFT. These KS orbitals were originally
introduced only as a practical tool, and no physical meaning
was initially attributed to them. Despite this, many authors have
extended the meaning of the Hartree-Fock (HF) orbital energies
to the KS case, and one can found that in many cases the
Koopmans’ theorem11 is used in the same way in both theories.12

For example, to evaluate the hardness of a chemical system,
the difference between the HOMO and LUMO energies has been
indistinctly used with both KS and HF orbitals.12,13 But, does

the KS orbitals have the same physical meaning that the
chemists look for? Could we relate the orbital energies emerged
from a KS calculation with the ionization potential, the electron
affinity, or other properties?

Some authors opened this discussion in the literature.14 It has
been proved that the KS orbitals must be carefully used when
we want to rationalize chemical phenomena with them; sym-
metry, ordering, and shape of orbitals must be checked.15 There
are two important results related with the exchange-correlation
potentials that contain the correct asymptotic behavior: (1) A
relationship between the HOMO KS eigenvalue and the
ionization potential has been established.16 Although this
relationship has been criticized,17 there is strong evidence that
it is valid when an exchange-correlation potential with the
appropriate asymptotic behavior is used.15,18,19(2) It has been
found a good agreement between the KS HOMO-LUMO
difference and the lowest excitation energy.20 This agreement
is explained by the similarity of the equations from many-body
quasiparticle and KS theories.21 However, these two important
results are not satisfied by many of the exchange-correlation
functionals commonly used, mainly because these functionals
do not cancel properly the self-interaction energy; consequently,
the corresponding exchange-correlation potentials show an
incorrect asymptotic behavior.22

It is well-known that many of the frequently used exchange-
correlation functionals do not correctly cancel the Coulomb
contribution of each electron with the corresponding exchange
part, this spurious remainder is known as the self-interaction
energy.1,23If this self-interaction contribution is not appropriately
canceled, some chemical events cannot be adequately described.
In this paper we show that the self-interaction plays an important
role on the computation of electronic properties such as
ionization potential, electronegativity, hardness, electrophilicity,
and singlet-triplet excitation energy. To estimate these quanti-
ties we approximate the vertical energy differences within the
frozen core approximation using the spin-polarized version of
the KS DFT. The resulting expressions for removal or addition
of one electron to an electronic system can be evaluated after* Corresponding author e-mail: ruvf@xanum.uam.mx.
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the self-consistent process. The frozen core approximation
means that the relaxation in the geometry and in the orbitals is
not considered when the number of electrons is changed in a
particular process. Although this approximation suggests a name
as frozen orbitals instead of frozen core approximation, we will
use the last one since it has been frequently used in the DFT
community.8b

In section II, a Koopmans-like approximation is introduced
in the KS formalism. Processes where the number of electrons
changes are treated in section III, and those where the multiplic-
ity is changing are discussed in section IV. Computational details
are in section V. Results and discussion related with ionization
potential, electron affinity, electronegativity, hardness, electro-
philicity, and singlet-triplet excitation energy are presented in
section VI. Concluding remarks are given in section VII.

II. Koopmans-like Approximation in the KS Method

The spin-polarized KS energy for a system withN electrons
and in the absence of a magnetic field is written as

NR andNâ represent the number of electrons with spinR and
â, respectively, such thatN ) NR + Nâ. EXC[FR, Fâ] is the
exchange-correlation energy, andυ(r ) is the external potential,
which in free molecules is only due to the nuclei.

The components of the total density are built from the KS
spin-orbitals,ψσ,i, as

whereFσ,i is a spin-orbital density andFσ is the electron density
associated with spinσ.

The KS spin-orbitals are those that minimize the total energy;
therefore, they satisfy the integro-differential KS equations:

where the operatorĥ is defined as

andυXC,σ(r ) ≡ δEXC/δFσ(r ) is the exchange-correlation potential
for spinσ, which corresponds to a first functional derivative of
the exchange-correlation energy functional. From eq 3, the KS
orbital energy takes the following form:

In the frozen core approximation the electronic stateP is
approximately described by the orbitals of a related reference

stateQ, using Koopmans’ ideas. For the reference stateQ, the
KS energy is given by eq 1:

where the KS spin-orbitals were renumbered for a short
notation, |DKS

Q 〉 is the KS determinant for this state,TS

represents the noninteracting kinetic energy functional,J cor-
responds to the classical Coulombic repulsion energy, and the
electron density for this state comes from eq 2, namely

Since the KS orbitals for the stateQ satisfy eq 5, then the
corresponding energy can be written in the form

and

The properties of the stateP must be obtained from the KS
determinant associated to this state,|DKS

P 〉. In the frozen core
approximation, the properties of the stateP come from a KS
determinant constructed with the reference state orbitals,
|DKS

P(Q)〉, that is,

where the orbitals{f i
P} correspond to a subset of the KS

orbitals from stateQ

Note that the stateP can have a different number of electrons
or just a change in its multiplicity. In the former case,
unoccupied KS orbitals must be added when the number of
electrons increases, or some of them must be removed if the
number of electrons decreases. For the latter case, unoccupied
orbitals must be added to one spin set, while the same number
of occupied orbitals must be removed from the other spin
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branch. Thus, the KS energy of the stateP can be approximated
by

where

FP(Q) is the frozen core density of the stateP, constructed with
orbitals coming from the reference stateQ:

and a similar expression for the spin components of the density.
Since the orbitals{fi

P} also satisfy eq 5, then

and

Finally, the estimated vertical energy change takes the form

where∆F ≡ FP(Q) - FQ and∆Fσ ≡ Fσ
P(Q) - Fσ

Q. Note that

and a Taylor expansion can be used on the exchange-correlation

functional around the reference system; therefore, this expansion
leads to

where the first-order terms vanish. Additional approximations
arise if a finite number of terms are kept from the Taylor
expansion. It is worth to note that the Coulomb part contributes
just to the second order since derivatives of superior order
vanish.

In addition, from the variational theorem,EKS
P(Q) > EKS

P , then
the frozen core vertical energy change always overestimates the
true vertical value:

III. Changes in the Number of Electrons

In this section we will discuss quantities that involve changes
in the number of electrons such as the ionization potential (IP)
and the electron affinity (EA). Within this paper we will work
with the frozen core approximation, which means that we will
describe all the chemical processes just with information of one
state, the reference stateQ. So we will suppose that the
relaxation of the geometry and spin-orbitals are negligible, and
in this sense we are preserving the Koopmans’ idea.

Ionization Potential. In this process we only remove one
electron, and it can be taken from either theR or â set. If σ′
stands for the spin type of the removed electron, then∆Nσ )
-δσ,σ′ and∆Fσ ) -δσ,σ′FσH, whereFσH is the orbital density of
the HOMO in theσ spin set andδij is the Kronecker’s delta
symbol. In this caseP andP(Q) are states withN - 1 electrons,
while Q containsN electrons. Note that we are subtracting one
electron from the HOMO (H) in order to keep the validity of
KS theory and to avoid holes in the electronic configuration.

For an open-shell system the removed electron comes from
the R component because in such a caseεR,H > εâ,H, and for a
closed-shell system there is no difference in the component
where the electron is removed sinceεR,H ) εâ,H, then in both
cases the orbitalψRH is involved. Therefore, eq 17 for the IP
takes the form

with

Equation 21 shows that the estimation of IP is different than
the Koopmans theorem, because in HF method IP is directly
identified with the negative of the HOMO energy.18 In KS
method there are three additional terms to the HOMO energy.
The contribution from these terms must be small if the exact
exchange-correlation potential is used. The main characteristics
of the exact exchange-correlation potential are that it must be
self-interaction free and it must exhibit the correct asymptotic
behavior. Most of the usual exchange-correlation potentials do
not satisfy such requirements. We can interpret the additional
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terms in eq 21 as a correction to the HOMO energy, coming
from the exchange-correlation potentials that do not ap-
propriately cancel the self-interaction contribution, to get a better
approximation to the IP.

The strategy is clear, first we have to obtain properties of
the reference systemQ. Later, we evaluate the terms involved
in eq 21, in this way the IP can be estimated just with the
information of the reference state. Another procedure to evaluate
IP comes from the truncated Taylor expansion given by eq 19.
In this particular case it must be evaluated with∆F ) -FRH:

In the exchange-only approach, Gopinathan24 got a similar
equation for theXR method. However, this author did not take
into account the second-order term in the series expansion of
the exchange energy; therefore the second derivative ofEXC in
eq 23 did not appear in his formulation. Thus, there are two
ways to approximate the IP. In one case we must evaluate the
difference ∆EXC

IP and, in the other, this difference is ap-
proximated with a series expansion up to second order. In this
work we only use the former one for all the cases, since
additional approximations to∆EXC

IP are avoided and its com-
putational implementation is easier.

Electron Affinity. In this case an electron is added to the
system in theσ′ spin set, then∆Nσ′ ) δσ,σ′ and∆Fσ ) δσ,σ′FσL,
whereFσL is the orbital density of the LUMO in theσ spin
branch. The reference stateQ containsN electrons;P andP(Q)
are states with one additional electron. For a closed-shell system
the LUMO is equal for bothR or â orbitals, but for an open-
shell system the electron must be added according to the Hund’s
high multiplicity rule. Here we restrict our attention to the
closed-shell case. The approximation for the electron affinity
(EA), given by eq 17, yields

where

Although eqs 21 and 24 are similar, the sign for the coulomb
integral and the difference between the exchange-correlation
energy are different. So it is expected a different behavior
between the IP and the EA.

Electronegativity and Hardness.Frequently, the electro-
negativity and hardness are computed by using the HOMO and
LUMO energies. It is well-known that these reactivity indexes
are related with derivatives of the total energy; the electro-
negativity,ø, with the chemical potential,µ, which is the first
derivative:3

and the hardness,η, with the second derivative:4

It is important to note that both derivatives must be evaluated

at the same external potential. Since the external potential is
due to the nuclei, the restriction of a fixed external potential
means that the geometry in a molecule must be frozen in the
process of removing or adding electrons. Using the finite
differences approximation, it is obtained thatø ) (1/2)(IP +
EA) andη ) (IP - EA). Since the external potential is fixed
in the derivatives of eqs 26 and 27, the corresponding IP and
EA are related with the corresponding vertical values. In this
way both quantities can be approximated in our approach by
using eqs 21 and 24. For a closed-shell system the electro-
negativity is given by

and the hardness takes the form

From here, the electrophilicity can be computed as7

The average between the HOMO and LUMO energies is
involved in the evaluation of the electronegativity, and the
difference between them is required to evaluate the hardness
according to eqs 28 and 29. These combinations of the orbital
energies are commonly used to estimate electronegativity and
hardness, in the context of the KS method; however, there are
additional terms that must be taken in account. In this work we
explore the contribution of these additional terms and their role
in the description of the electronegativity, hardness, and
electrophilicity.

IV. Excitation Energies

In section III, we discussed processes where the total number
of electrons is changing. However, in processes such as
electronic excitation, the number of electrons is constant. In
this section we analyze processes involving changes in the
multiplicity; consequently, the spin number,NS ≡ NR - Nâ,
also varies. For example, consider a process where an electron
is transferred from theâ set to theR one. Note that this process
represents an electronic excitation. In this approach we preserve
the geometry, so vertical excitation energies or vertical splitting
energies are described.

Toward a Higher Multiplicity. In this process the number
of electrons from the componentR increases, while the number
of electrons from the spinâ decreases in the same amount to
keepN constant. In terms ofNR andNâ, we have

This case presents a difference with respect to the processes
treated in section III, whereas in those processesNR or Nâ
changes, here bothNR andNâ are changing. Since one electron
from HOMO â is transferred to the LUMOR, the changes in
the spin-densities are
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To estimate the energy change involved in this process (HM),
we must evaluate eq 17, with∆FR and∆Fâ from eq 32, to obtain

Note that, although in eqs 29 and 33 the difference between
the frontier orbital energies appears, these equations are drasti-
cally different. First, in eq 33 there is a cross term in the
Coulombic contribution that is not present in eq 29. Second, in
eq 29, two differences between the exchange-correlation ener-
gies are involved, while in eq 33 just one appears,∆EXC

HM )
EXC[FR + FRL, Fâ - FâH] - EXC[FR, Fâ]. Consequently eqs 29
and 33 have different values, and they represent two different
quantities, the hardness and an excitation energy, respectively.

Expansion of eq 33 up to second order leads to an expression
similar to eq 19:

with ∆F ) ∆FR + ∆Fâ ) FRH - FâL. Equation 34 constitutes
an important result because it relates our approach with the time-
dependent DFT approach,25 if the density current dependence
is ignored. To estimate the energy changes when the multiplicity
increases, we can use eq 33 or eq 34. We use eq 33 in order to
avoid a truncation error from the series expansion. Furthermore,
note that the difference between the spin frontier orbital
eigenvalues in eqs 33 and 34 represents twice the spin potential
(µs).6,26 This reactivity parameter has been defined in the spin-
polarized DFT, and it has been used previously with a different
approach to estimate vertical singlet-triplet energy gaps in
halocarbenes,27 transition metal ions,26 free radical generators,28

and other compounds. Additionally, previous works have
directly related the HOMO-LUMO eigenvalue gap with the
excitation energy when the exact exchange-correlation potential
is used.19,20 We have found that the excitation energy estimate
has additional terms to the HOMO-LUMO difference. Since
the exchange-correlation functionals currently used do not have
the correct asymptotic behavior and are not self-interaction free,
all terms in eq 33 must be kept.

Toward a Lower Multiplicity. The energy change for the
decrement in the multiplicity is straightforward using the
arguments used in the previous section. In this case we have
the following changes:

and

where we assumed that one electron is transferred from HOMO
R to LUMO â. For this case the energy change (LM) is

V. Computational Details

To test our approach to approximate IP, EA, and HM, eqs
21, 24, and 33 were programmed in a development version of

the NWChem V4.5 code.29 Integrals are evaluated at the end
of the self-consistent cycle, and results are obtained in a single
program execution. The exchange-correlation functionals used
are Dirac (Slater)30 and SVWN30,31 for LDA, Becke32 and
BLYP32,33 for GGA, and B3LYP for the hybrid method.34 The
results obtained with these exchange-correlation functionals are
compared with the orbitals energies obtained with exchange
potentials that exhibit correct asymptotic behavior such as HF
and the exact local multiplicative exchange potential (νx

exact).
Details about theνx

exact can be found in ref 15. The most
important characteristic of this potential is that it gives KS
orbitals that reproduce HF densities. Additionally, the vertical
energy differences (∆EV) of each process were evaluated
according to the∆SCF method, where on the neutral system
geometry the energy is computed when the number of electrons
or spin is changed. Thus results from eqs 21, 24, and 33 will
be compared with vertical energy changes.

The systems used to test the reliability of this approach are
LiH, FH, H2O, NH3, and CH4, and experimental geometries
for these systems were used. Since the virtual orbital energies
are involved in our approach, we used the aug-cc-pVTZ35 with
an additional diffuse function as a basis set. We used this basis
set because the diffuse functions have a big impact in the
description of DFT and HF virtual orbitals and in the anions.14b,20d

As it was mentioned in section II, the most important feature
of the approach presented in this work is that we are just using
information from the ground state. The additional effort after
the self-consistent process corresponds to the evaluation of the
integrals J[∆FR + ∆Fâ], EXC[FR + ∆FR, Fâ + ∆Fâ],
∫ dr∆FR(r )υXC,R(r ), and∫ dr∆Fâ(r )υXC,â(r ). It means that after
the self-consistent processJ and EXC must be evaluated with
the difference∆FR and ∆Fâ, such differences depend on the
process to be considered and they are frontier orbital densities.
Additionally, the exchange-correlation potential for each spin-
component is integrated with its respective density difference.

VI. Results and Discussion

Ionization Potential. Three approximations for the ionization
potential reported in Table 1 are (1) the negative of the HOMO
eigenvalue obtained with the exchange-correlation functionals
considered in this work, (2) the frozen core approximation given
by eq 21 and, (3) the direct computation of the vertical energy
difference (∆EV), the cation minus the neutral system. The
behavior of these quantities is depicted in Figure 1. All of these
estimations for the ionization potential are compared in Table
1 with the experimental information36 and with the HOMO
energy obtained with exchange potentials that exhibit good
asymptotic behavior, such as the HF potential and the local
multiplicative exchange potential,νx

exact.
From Table 1 and Figure 1, it is evident the well-known fact

that the HOMO energy obtained from the usual DFT exchange-
correlation potentials underestimates the ionization potential.
This observation led to assume that the HOMO from KS theory
was not directly related with the ionization potential since LDA,
GGA and hybrid methods are not satisfying the relation IP)
-εHOMO. Contrary to this behavior, exchange potentials with
the correct asymptotic behavior give HOMO energies close to
the experimental ionization potential, although they slightly
overestimate this quantity.

According to eq 21, the additional terms of the HOMO energy
are related to the contribution of the non-canceled self-
interaction by the usual exchange-correlation functionals. Note

HM ) EKS
(NR+1,Nâ-1) - EKS

(NR,Nâ) ≈ (εR,L - εâ,H) + J[FRL -

FâH] + ∫(FâHυXC,â
(NR,Nâ) - FRLυXC,R

(NR,Nâ)) + ∆EXC
HM (33)

HM ≈ (εR,L - εâ,H) +
1

2
∫∫ dr dr ′

∆F(r ′)∆F(r )

|r - r ′|
+

1

2
∑

σ,σ′)R,â
∫∫ dr dr ′

δ2EXC

δFσ(r )δFσ′(r ′)
∆Fσ′(r ′)∆Fσ(r ) (34)

∆NR ) - 1, ∆Nâ ) 1 (35)

∆FR ) -FRH, ∆Fâ ) FâL (36)

LM ) EKS
(NR-1,Nâ+1) - EKS

(NR,Nâ) ≈ (εâ,L - εR,H) +

J[FâL - FRH] + ∫(FRHυXC,R
(NR-Nâ) - FâLυXC,â

(NR-Nâ)) dr + ∆EXC
LM

(37)
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that the values from Table 1 show that the hybrid B3LYP
functional presents the smallest spurious contribution on each
molecule.

Comparing the vertical energy difference for all functionals
with the experimental ionization potential, we see that the
inclusion of a correlation functional, such as VWN or LYP, is
important in order to obtain better approximations to the
experimental data. One can observe that vertical energies
overestimate the IP. The reason of this behavior comes from
the lack of the relaxation in the geometry. Remember that in
this work we have used experimental geometries to test our
approach. Let us work with one molecule with one of the largest
differences with respect to the experiment; NH3 with 0.023 and
0.026 hartrees for BLYP and B3LYP, respectively. If we
optimize the neutral system with the BLYP method and the IP
is estimated with the∆SCF method, it is found an IP of 0.4006
hartrees. If the geometry of the cation is optimized, the predicted
adiabatic IP is 0.3734 hartrees, which give a better comparison
with respect to the experimental information. That means that
for the NH3 molecule the geometry relaxation contribute in
0.0272 hartrees. It is important to point out that we picked the
BLYP and B3LYP functionals to make this comparison since
they give a good prediction of the IP when the adiabatic process
is considered.

As we mentioned before, our frozen core approach is based
in the absence of relaxation in the geometry and the orbitals.
For this reason the results obtained from eq 21 must be
compared with the vertical energy differences, and the difference
obtained between both cases must be attributed to the lack of
relaxation of the orbitals. In Table 2, the absolute error between
eq 21 and the vertical ionization potential is reported. From
this table it is clear that the lack of relaxation of the orbitals in
eq 21 is important. For all molecules and all exchange-
correlation functionals considered in this work, eq 21 over-
estimates the vertical ionization potential due to the absence of
relaxation in the orbitals, this trend is in agreement with eq 20.
It is interesting to note that the overestimation obtained for a
given molecule with any exchange-correlation functional is
almost constant. This fact seems to indicate that the relaxation

of the orbitals in DFT for the vertical IP is not very sensitive to
the type of the exchange-correlation functional used, even if a
correlation functional is not considered. The average of the
overestimation in the IP obtained with eq 21 for each molecule
also is reported in Table 2. The largest overestimation corre-
sponds to the molecule FH with an average of 0.1246 hartrees.
Although we are obtaining an overestimation of the IP using
eq 21, this prediction is much better than that coming from the
HOMO energy obtained with the same exchange-correlation
functionals, as it can be seen from Table 1.

Using the BLYP method as reference for the vertical IP, we
can compare these values with the HOMO energies obtained
with HF andνx

exact. We use the BLYP functional as reference
since it presents a good performance in the prediction of
adiabatic IP and EA.37 In Figure 2, the vertical∆E obtained
with the BLYP functional is compared with the negative of the
HOMO energy obtained with HF and withνx

exact. From Table 1
and Figure 2 we see that these HOMO energies are closer to
the vertical IP than to the adiabatic experimental counterpart.
Recently some results showed that the HOMO energies can be
improved with the design of exchange-correlation potentials with
the correct asymptotic behavior18b,38 or using a scaling ap-
proach.39

Electron Affinity. The prediction of electron affinities is a
challenge for any quantum chemistry method because the EA
is a small quantity compared with the ionization potential.
Recently it was shown that DFT gives a good prediction of the
adiabatic electron affinity in well-characterized systems.40 From
eq 24 we see that the LUMO energy is related with the electron
affinity, in fact within HF theory, in the Koopmans’ context,
the negative of this orbital energy is directly related with the
electron affinity. Like in the ionization process, the additional
terms in eq 24 are related with the self-interaction energy.

In Table 3, the vertical electron affinities (∆EV) for the
molecules considered in this work are presented. These vertical
electron affinities are compared with the negative of the LUMO
energy obtained with all exchange-correlation functionals tested.
From this table,∆EV shows that only the LiH molecule has an
anion that is more stable than the corresponding neutral
molecule. This means that the EA estimated by∆EV is negative
in all the other studied molecules. Contrary to this behavior,
with all the exchange-correlation potentials tested here, the
estimation to the electron affinity given by the LUMO energy
is always positive. The sign of this orbital energy, shown in
Table 3, is different to that obtained with∆EV. The main point
here is that the LUMO energies obtained with any of the used
exchange-correlation functionals give a bad approximation to
the EA, since all of them are negative and consequently they
yield positive electron affinities. In general the LUMO energy
is bound when it is obtained with the usual exchange-correlation
potentials, although its value is small. In ref 22b the difference
between HF and KS potentials is addressed. The frozen core
estimation given by eq 24 is also presented in Table 3, and
trends are shown in Figure 3. It can also be seen from Table 3

TABLE 1: Estimations for the Ionization Potential in
Hartrees

system

method LiH FH H2O NH3 CH4

-εHOMO 0.1284 0.3109 0.2254 0.1880 0.3018
Slater eq 21 0.2898 0.6808 0.5319 0.4426 0.5093

∆EV 0.2443 0.5561 0.4277 0.3604 0.4690

-εHOMO 0.1389 0.3213 0.2346 0.1977 0.3165
Becke eq 21 0.3099 0.6841 0.5361 0.4486 0.5212

∆EV 0.2631 0.5574 0.4295 0.3646 0.4821

-εHOMO 0.1613 0.361 0.2719 0.2322 0.3482
SVWN eq 21 0.3422 0.7392 0.5872 0.4965 0.5619

∆EV 0.3016 0.6162 0.4843 0.4154 0.5232

-εHOMO 0.1588 0.3543 0.265 0.226 0.3449
BLYP eq 21 0.3433 0.7243 0.5742 0.4857 0.5663

∆EV 0.3003 0.5993 0.4692 0.4033 0.5166

-εHOMO 0.1953 0.4245 0.3246 0.2774 0.396
B3LYP eq 21 0.3465 0.7237 0.575 0.4878 0.5629

∆EV 0.3044 0.5999 0.4705 0.4060 0.5246

HF -εHOMO 0.3015 0.6503 0.5103 0.4316 0.5455

νx
exact -εHOMO 0.3031 0.6421 0.5054 0.4308 0.5349

exp IP 0.28a 0.59a 0.46b 0.38b 0.48b

a Ref 36a.b Ref 36b

TABLE 2: Error between the IP Estimated by Equation 21
and the Vertical Energy Difference

system

method LiH FH H2O NH3 CH4

Slater 0.0455 0.1247 0.1042 0.0822 0.0403
Becke 0.0468 0.1267 0.1066 0.0840 0.0391
SVWN 0.0406 0.1230 0.1029 0.0811 0.0387
BLYP 0.0430 0.1250 0.1050 0.0824 0.0497
B3LYP 0.0421 0.1238 0.1045 0.0818 0.0383
average 0.0436 0.1246 0.1046 0.0823 0.0412
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that if exchange-correlation potentials with the correct asymp-
totic potential are used, LUMO energies are bound and more
negative. This behavior is not shared by the HF LUMO energy;
Table 3 shows that its value is positive, except for LiH, and
very close to zero. In Figure 4, the behavior of the negative
LUMO energies obtained with HF and with the local multiplica-
tive potentialνx

exact is presented. Both energies are compared
with the vertical EA obtained with the BLYP functional. From

this figure it is clear that the trend exhibited by the LUMO
obtained with theνx

exact potential is very different to that
obtained with HF, which is a different behavior with respect to

Figure 1. Ionization potential. The solid circles indicate the vertical ionization potential, the open circles indicate the negative of the HOMO
energies, and the triangles indicate the estimation obtained from eq 21.

Figure 2. Ionization potential. The solid circles correspond to the
experimental values, the open circles correspond to the BLYP vertical
values, the solid triangles correspond to the negative of the HF HOMO,
the open triangles correspond to the negative of the HOMO obtained
with theνx

exactpotential, and the solid squares correspond to the BLYP
frozen core approximation.

TABLE 3: Estimations for the Electron Affinity in Hartrees

system

method LiH FH H2O NH3 CH4

-εLUMO 0.0412 0.0155 0.0159 0.0110 0.0023
Slater eq 24 -0.0156 -0.0393 -0.0350 -0.0295 -0.0226

∆EV 0.0057 -0.0111 -0.0105 -0.0103 -0.0109

-εLUMO 0.0487 0.0260 0.0256 0.0199 0.0103
Becke eq 24 -0.0060 -0.0365 -0.0314 -0.0271 -0.0237

∆EV 0.0120 -0.0064 -0.0062 -0.0063 -0.0066

-εLUMO 0.0561 0.0344 0.0343 0.0268 0.0136
SVWN eq 24 -0.0033 -0.0414 -0.0330 -0.0281 -0.0237

∆EV 0.0163 -0.0010 -0.0007 -0.0014 -0.0032

-εLUMO 0.0621 0.0413 0.0396 0.0316 0.0190
BLYP eq 24 -0.0081 -0.0428 -0.0345 -0.0304 -0.0277

∆EV 0.0145 -0.0041 -0.0039 -0.0047 -0.0062

-εLUMO 0.0511 0.0267 0.0262 0.0205 0.0107
B3LYP eq 24 0.0010-0.0266 -0.0225 -0.0201 -0.0182

∆EV 0.0165 -0.0016 -0.0016 -0.0023 -0.0038

HF -εLUMO 0.0078 -0.0078 -0.0083 -0.0081 -0.0086

νx
exact -εLUMO 0.1619 0.2212 0.1976 0.1706 0.1515
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the ionization potential where both methods give essentially the
same trend. The main reason of such a difference stems in that
HF and local-multiplicative potentials exhibit a different
behavior for the virtual orbitals, as it has been discussed in
previous work.22b Note that the use of additional diffuse
functions, for example in the aug-cc-pVTZ basis set, generates
an improvement to the HF LUMO energies and the trend
exhibited by these energies is similar to that obtained with the
vertical EA.

The frozen core approximation gives a better estimation of
EA, however the corresponding values underestimate this energy
difference (eq 20) and EA values obtained from eq 24 are
negative in all cases, except for the B3LYP functional where
the sign is correctly predicted. Since the present approach
approximates the energy of the anion with the orbitals from
the neutral species, it is assumed that the new orbital remains
unchanged. The results show that this assumption does not hold.
In the process of adding one electron to a molecule, the KS
orbital relaxation plays a very important role, which may lead
to important errors.

In summary, the ionization potential can be reasonably
approximated from eq 21 or directly using the HOMO energy
obtained from νx

exact potential. The trend exhibited by the
HOMO energy obtained with the exchange-correlation potentials
considered in this work is similar to those obtained with the
vertical ionization potentials. Contrary to this behavior the sign
of the vertical electron affinity cannot be reproduced by the
LUMO energy obtained with any exchange-correlation potential,
neither with the local multiplicative potential,νx

exact. Thus, the
negative of the LUMO energy obtained from an exchange-
correlation potential with the correct asymptotic behavior must
not be used as an approximation to the EA. Consequently the
anomalies presented by the LUMO energies will affect the
description of theø, η, andω obtained from these quantities.

Figure 3. Electron affinity. The solid circles indicate the vertical electron affinity, the open circles indicate the negative of the LUMO energies,
and the triangles indicate the estimation obtained from eq 24.

Figure 4. Electron affinity. The solid circles indicate the BLYP vertical
values, the open circles indicate the negative of the HF LUMO energies,
the solid triangles indicate the negative of the LUMO obtained with
the νx

exact potential, and the blank triangles indicate the BLYP frozen
core approximation.
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This problem does not apply to the HF orbital energies since
these energies give reasonable approximations to IP and EA.

Electronegativity. This quantity was obtained by using the
vertical IP and EA according to the finite difference approxima-
tion ø ) 1/2(IP + EA). Estimation of IP and EA is done with
the following approximations: (1) vertical energies,∆EV; (2)
frozen core, eq 28; (3) HOMO and LUMO energies. These
results are reported in Table 4.

Since the electron affinity is a small quantity, in general the
electronegativity behavior is commanded by the ionization
potential. Although the LUMO energies obtained with any of
the tested exchange-correlation functionals are negative, they
are close to zero. Consequently the electronegativity trend from
HOMO and LUMO energies, obtained with these functionals,
is similar to that obtained with the HOMO energy for the
estimation of IP (see Figure 1).

It is evident that, in absolute values, the estimation ofø with
the KS orbital energies is not good. However, the underestima-
tion of ø given by the orbital energies is modified in the correct
direction by the frozen core approximation proposed in this
work; moreover, this approach presents a small overestimation
of such quantity. Thus, the prediction made by the frozen core
approximation is better than that obtained by the HOMO and
LUMO energies.

In Figure 5, the electronegativity from the vertical energy
differences obtained with the BLYP functional is compared with
the ø estimated with the orbital energies from HF andνx

exact

potentials. Without doubt the trend obtained for this quantity
with the HF orbital energies is very similar to that obtained
with the vertical BLYP energy differences; in fact the absolute
values between these two methods are in good agreement. In
opposition to the previous methods, the electronegativity
estimated with the orbital energies fromνx

exact is greater than
that obtained with the vertical energy difference, since the
LUMO energy obtained fromνx

exact is very deep.
Hardness. As it was mentioned above, the hardness is

estimated asη ) (IP - EA). Here we again used the same
approximations for the IP and EA: (1) vertical energies; (2)

frozen core, eq 29; (3) HOMO and LUMO energies. The results
are reported in Table 5.

The hardness obtained with the eq 29 and with the HOMO
and LUMO energies show a similar trend to that obtained with
the vertical energy differences. Comparing results from Table
1 and Table 5, it is clear that the behavior exhibited by the
hardness is similar to that of the ionization potential with any
of the exchange-correlation potentials used in this work, since
the LUMO energies are very small. Although the electron
affinity is underestimated by the frozen core approach, the trend
is similar to that from the vertical energy differences. In Table
5 the hardness obtained with the three approaches to IP and
EA is reported. From this table we can see that the frozen core
approach gives a better estimation of the hardness than that
obtained just with the KS HOMO and LUMO energies.
Overestimation of the hardness by the frozen core approach
shown in Table 5 is a consequence of eq 20.

In Figure 6, the hardness obtained with the BLYP vertical
energy differences and with HOMO and LUMO energies from
the HF andνx

exact potentials is depicted. It is clear that the HF
frontier orbital energies give a reasonable estimation of hardness.
Contrary to this behavior, the hardness values calculated with
the frontier orbital energies from the local multiplicative
potential (νx

exact) underestimate the BLYP vertical energy dif-

TABLE 4: Electronegativity Obtained with the HOMO and
LUMO Energies, the Frozen Core Approximation, and the
Vertical Energy Differencesa

system

method LiH FH H2O NH3 CH4

orbital energies 0.0848 0.1632 0.1207 0.0995 0.1521
Slater frozen core 0.1371 0.3208 0.2485 0.2066 0.2434

vert. difference 0.1250 0.2725 0.2086 0.1751 0.2291

orbital energies 0.0938 0.1737 0.1301 0.1088 0.1634
Becke frozen core 0.1520 0.3238 0.2524 0.2108 0.2488

vert. difference 0.1375 0.2755 0.2116 0.1791 0.2377

orbital energies 0.1087 0.1977 0.1531 0.1295 0.1809
SVWN frozen core 0.1695 0.3489 0.2771 0.2342 0.2691

vert. difference 0.1589 0.3076 0.2418 0.2070 0.2600

orbital energies 0.1105 0.1978 0.1523 0.1288 0.1820
BLYP frozen core 0.1676 0.3408 0.2699 0.2277 0.2693

vert. difference 0.1574 0.2976 0.2326 0.1993 0.2552

orbital energies 0.1232 0.2256 0.1754 0.1490 0.2034
B3LYP frozen core 0.1738 0.3486 0.2763 0.2339 0.2724

vert. difference 0.1604 0.2992 0.2344 0.2018 0.2604

HF orbital energies 0.1547 0.3213 0.2510 0.2118 0.2685

νx
exact orbital energies 0.2325 0.4317 0.3515 0.3007 0.3432

a Values reported in hartrees.

Figure 5. Electronegativity estimated with the BLYP vertical energy
differences (solid circles), HF orbital energies (open circles),νx

exact

orbital energies (solid triangles), and BLYP frozen core approximation
(open triangles).

TABLE 5: Hardness Obtained with the HOMO and LUMO
Energies, the Frozen Core Approximation, and the Vertical
Energy Differencesa

system

method LiH FH H2O NH3 CH4

orbital energies 0.0872 0.2954 0.2095 0.1770 0.2995
Slater frozen core 0.3054 0.7201 0.5669 0.4721 0.5319

vert. difference 0.2386 0.5673 0.4382 0.3707 0.4799

orbital energies 0.0902 0.2953 0.2090 0.1778 0.3062
Becke frozen core 0.3159 0.7206 0.5675 0.4757 0.5449

vert. difference 0.2512 0.5638 0.4357 0.3709 0.4887

orbital energies 0.1052 0.3266 0.2376 0.2054 0.3346
SVWN frozen core 0.3455 0.7806 0.6202 0.5246 0.5856

vert. difference 0.2853 0.6172 0.4849 0.4167 0.5264

orbital energies 0.0967 0.3130 0.2254 0.1944 0.3259
BLYP frozen core 0.3514 0.7671 0.6087 0.5161 0.5940

vert. difference 0.2858 0.6035 0.4731 0.4080 0.5227

orbital energies 0.1442 0.3978 0.2984 0.2569 0.3853
B3LYP frozen core 0.3455 0.7503 0.5975 0.5079 0.5811

vert. difference 0.2879 0.6015 0.4721 0.4083 0.5285

HF orbital energies 0.2937 0.6581 0.5186 0.4397 0.5541

νx
exact orbital energies 0.1412 0.4209 0.3079 0.2602 0.3834

a Values reported in hartrees.
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ferences, roughly in one-half. Curiously, the hardness values
from the frontier orbitals of B3LYP and the local multiplicative
potential are very similar. Thus, we can conclude that the orbital
energies obtained with a local multiplicative potential such, as
LDA, GGA or νx

exactmust not be used to estimate the hardness
of a chemical system. This observation can be applied to any
KS local multiplicative potential.

Electrophilicity. In Table 6 the electrophilicity computed
from ø andη with the three previously discussed approaches is
reported. From the previous analysis of the KS orbital energies
performance, it is clear that the use of the HOMO and LUMO
KS energies is not suitable for the estimation of this property.
In fact, if orbital energies from an exchange-correlation potential
with the correct asymptotic behavior are used, the estimation
of ω becomes worst, with respect to those values obtained with
vertical differences to IP and EA. Contrary to this behavior the
HF orbital energies give a good estimation ofω. It is worth to
note that the frozen core approximation proposed in this work
gives values ofω close to those obtained with the vertical energy
differences. These trends are shown in Figure 7.

From previous sections we can conclude that for the estima-
tion of ø, η, andω with orbital energies it is only recommend-
able to use the HF approach, but if the KS approach is used,

then the frozen core approach proposed in this work must be
used in order to get a better approximation.

Excitation Energies. Up to now, quantities related with
energy differences due to changes in the number of electrons
have been discussed. Here energy differences due to multiplicity
changes, where the number of electrons remains fixed, are
discussed. In particular, we are interested in changes where a
closed-shell system transforms into a vertical triplet state
(vertical singlet-triplet splitting), and this process corresponds
to a vertical excitation energy. In Table 7 several approximations
to vertical excitation energies, for all exchange-correlation
functionals tested, are reported: (1) the vertical triplet-singlet
energy difference, (2) frozen core (eq 33), and (3) orbital energy
difference εLUMO - εHOMO. Experimental vertical excitation
energies are also listed.41

From Table 7 we note that the vertical excitation energies
predicted by DFT are in good agreement with the experimental
counterpart. To obtain this agreement it is important to include
the correlation energy contribution. Table 8 presents the relative
percent error obtained with all exchange-correlation functionals
used in this work with respect to the experimental values. From
this table, the underestimation of the vertical excitation energies
obtained with exchange-only functionals is evident. The inclu-

Figure 6. Hardness estimated with the BLYP vertical energy differ-
ences (solid circles), with HF orbital energies (open circles),νx

exact

orbital energies (solid triangles), and BLYP frozen core approximation
(open triangles).

TABLE 6: Electrophilicity Obtained with the HOMO and
LUMO Energies, the Frozen Core Approximation, and the
Vertical Energy Differencesa

system

method LiH FH H2O NH3 CH4

orbital energies 0.0412 0.0451 0.0347 0.0280 0.0386
Slater frozen core 0.0308 0.0714 0.0544 0.0452 0.0557

vert. difference 0.0327 0.0654 0.0497 0.0414 0.0547

orbital energies 0.0488 0.0511 0.0405 0.0333 0.0436
Becke frozen core 0.0365 0.0727 0.0561 0.0467 0.0568

vert. difference 0.0377 0.0673 0.0514 0.0432 0.0578

orbital energies 0.0562 0.0598 0.0493 0.0408 0.0489
SVWN frozen core 0.0416 0.0780 0.0619 0.0523 0.0618

vert. difference 0.0443 0.0766 0.0603 0.0514 0.0642

orbital energies 0.0631 0.0625 0.0515 0.0427 0.0508
BLYP frozen core 0.0400 0.0757 0.0598 0.0502 0.0610

vert. difference 0.0433 0.0734 0.0572 0.0487 0.0623

orbital energies 0.0526 0.0640 0.0516 0.0432 0.0537
B3LYP frozen core 0.0437 0.0810 0.0639 0.0538 0.0638

vert. difference 0.0447 0.0744 0.0582 0.0499 0.0642

HF orbital energies 0.0407 0.0784 0.0607 0.0510 0.0650

νx
exact orbital energies 0.1914 0.2213 0.2006 0.1738 0.1536

a Values reported in hartrees.

Figure 7. Electrophilicity estimated with the BLYP vertical energy
differences (solid circles), HF orbital energies (open circles),νx

exact

orbital energies (solid triangles), BLYP frozen core approximation (open
triangles), and BLYP orbital energies (solid squares).

TABLE 7: Estimations for Vertical Excitation Energies
Singlet-Triplet a

system

method LiH FH H2O NH3 CH4

εL - εH 0.0872 0.2955 0.2095 0.1770 0.2994
Slater eq 33 0.1194 0.4809 0.3460 0.2891 0.3999

∆EV 0.0812 0.3487 0.2396 0.2017 0.3575

εL - εH 0.0902 0.2953 0.2090 0.1778 0.3062
Becke eq 33 0.1304 0.4724 0.3426 0.2879 0.4014

∆EV 0.0893 0.3394 0.2331 0.1995 0.3630

εL - εH 0.1053 0.3267 0.2376 0.2053 0.3346
SVWN eq 33 0.1548 0.4954 0.3620 0.3085 0.4175

∆EV 0.1222 0.3839 0.2721 0.2353 0.3874

εL - εH 0.0967 0.3130 0.2254 0.1944 0.3259
BLYP eq 33 0.1576 0.4866 0.3571 0.3052 0.4162

∆EV 0.1221 0.3686 0.2601 0.2271 0.3853

εL - εH 0.1442 0.3978 0.2983 0.2569 0.3853
B3LYP eq 33 0.1616 0.5021 0.3705 0.3161 0.4321

∆EV 0.1221 0.3663 0.2598 0.2284 0.3927

HF εL - εH 0.2937 0.6581 0.5186 0.4397 0.5541

νx
exact εL - εH 0.1412 0.4209 0.3079 0.2602 0.3834

experiment 0.12b 0.38b 0.26c 0.21d 0.40c

a Values reported in hartrees.b Ref 36a.c Ref 41.d Ref 36b.
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sion of a correlation functional greatly improves the prediction
of these quantities, even with the local SVWN functional we
can obtain a reasonable approximation, except for the NH3

where the error increases.
The behavior of the vertical excitation energy for each

exchange-correlation functional is depicted in Figure 8. Com-
paring the excitation energies with the hardness, both obtained
with the vertical energy differences, it is clear that they are
different. Whereas the differenceεLUMO - εHOMO gives an
evident underestimation of the hardness, this difference is very
close to the vertical excitation energies for any exchange-
correlation functional of this work.20,42 Overestimation of the
frozen core vertical excitation energies, observed in Table 7,
comes from eq 20. Contrary to the results obtained in previous
sections, the values from the orbital energy difference are better

than those obtained from the frozen core approximation. In
Figure 9, trends for BLYP vertical excitation energies, HF, and
νx

exact frontier orbital energy differences are compared with
experimental data. In opposition to the KS case, the HF orbital
energies are not appropriate to approximate excitation energies,
an overestimation to this quantity is found, whileνx

exact values
slightly overestimate the BLYP vertical values. It is important
to note that HF frontier orbital energies are related to removal

Figure 8. Vertical excitation energies. Solid circles represent vertical energy differences, open circles indicate the orbital energies, and the triangles
indicate the estimation obtained from the frozen core approximation, eq 33.

TABLE 8: Relative Percent Error between the Vertical
Excitation Energies and Experimental Data

system

EXC LiH FH H2O NH3 CH4

Slater -32 -8 -8 -4 -11
Becke -26 -11 -10 -5 -9
SVWN 2 1 5 12 3
BLYP 2 -3 0 8 -4
B3LYP 2 4 0 9 -2

Figure 9. Excitation energies estimated with the BLYP vertical energy
differences (solid circles), HF orbital energies (open circles),νx

exact

orbital energies (solid triangles), experimental values (open triangles),
and BLYP frozen core approximation (solid squares).
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or addition of electrons by Koopmans’ theorem, but excitation
energy does not naturally appear in this model.

VII. Concluding Remarks

In this paper the frontier KS orbitals are used to estimate
properties such as electronegativity, hardness, electrophilicity,
and excitation energies in the frozen core approximation. It is
clear from the present approach that these quantities are not
only related with HOMO and LUMO energies, but also
additional contributions appear. These contributions can be
associated with the incomplete cancellation of the self-interac-
tion, which is present in many of the currently used exchange-
correlation functionals.

Our results show that for the ionization process, the additional
contribution is larger for the local (SVWN) exchange-correlation
functional, while the smallest corresponds to the hybrid B3LYP
functional. Furthermore, the trend for the KS HOMO and the
vertical ionization potentials is the same. On the other hand,
the sign of the LUMO energy does not match that of the vertical
electron affinities. In consequence the description ofη, ø, and
ω is affected when only HOMO and LUMO energies are used.
In this way, the frozen core approximation presented here
provides a better way to estimate these reactivity descriptors.
It is very evident that electrophilicity index values obtained from
KS frontier orbital energies do not follow the trend shown by
the vertical energies, which is similar to the frozen core values.
Contrary to this behavior, the HF orbital energies show a good
comparison with the ionization potential and electron affinity.
Consequently, the reactivity descriptors considered in this work
are well-described with this method. For the excitation energies,
KS frontier orbital differences give better results than the frozen
core approach, and the estimations from the HF orbital energies
are largely overestimated. It is important to mention that the
Hartree-Fock LUMO energy gives a good correlation with the
electron affinity, which is not true for the LUMO energy
obtained with any exchange-correlation potential. Thus the
physical meaning for the LUMO energy is quite different
between Hartree-Fock and Kohn-Sham approaches.

In general, the frozen core approach presented here enhances
the estimations obtained with KS orbital energies, with one
exception. For excitation energies, the KS energy differences
provide better results than the frozen core approximation. Thus,
the better numerical values come from the following strategy:
Use a correlated method, such a BLYP or B3LYP, to optimize
the molecular geometry; on that geometry compute the electronic
structure with the HF method; use the HF orbital energies to
estimateη, ø, andω. For the singlet-triplet splitting, the KS
orbital energies give a reasonable approximation. Inclusion of
spin-polarized chemical indexes can be done if appropriate
restrictions are applied.6,26,43
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